Kā reizināt kvadrātsakni ar kvadrātsakni


Tālmācības vidusskola: Darbības ar saknēm. 10. klases matemātika Rīgas 1. vidusskolā (tālmācība) (Jūnijs 2019).

Anonim

Viena no četrām vienkāršākajām matemātiskajām operācijām (reizināšana) radīja citu, nedaudz sarežģītāku - eksponenciāciju. Tas, savukārt, radīja papildu sarežģītību matemātikas apguvei, izraisot pašas apgrieztās operācijas - izvilkot sakni. Visas pārējās matemātiskās operācijas var pielietot jebkurā no šīm operācijām, kas vēl vairāk sajauc pētījuma priekšmetu. Lai kaut kā to racionalizētu, ir noteikumu kopumi, no kuriem viens regulē sakņu vairošanās kārtību.

Instrukcija

1

Izmantojiet, lai reizinātu kvadrātu saknes - šīs operācijas rezultātam jābūt kvadrātsaknei, kuras radikāla izpausme būs reizinātāju sakņu izpausmju rezultāts. Šo noteikumu piemēro, reizinot divus, trīs un citus kvadrātveida sakņu skaitļus. Tomēr tas attiecas ne tikai uz kvadrātveida saknēm, bet arī uz kubikmetru vai ar jebkuru citu eksponentu, ja šis indekss ir vienāds visiem radikāļiem, kas piedalās operācijā.

2

Ja zem daudzveidīgo sakņu pazīmēm ir skaitliskas vērtības, tad reiziniet tās kopā un iegūst iegūto vērtību zem saknes zīmes. Piemēram, reizinot √3.14 ar .67.62, šo darbību var rakstīt kā: √3, 14 * √7.62 = √ (3, 14 * 7, 62) = 3.23, 9268.

3

Ja radikālas izteiksmes satur mainīgos, tad vispirms uzrakstiet savu produktu ar vienu radikālu zīmi un pēc tam mēģiniet vienkāršot radikālo izpausmi. Piemēram, ja jums ir nepieciešams reizināt √ (x + 7) ar √ (x-14), tad darbību var rakstīt kā: √ (x + 7) * √ (x-14) = √ (((x + 7) * (x- 14)) = √ (x²-14 * x + 7 * x-7 * 14) = √ (x²-7 * x-98).

4

Ja jums ir jāaudzina vairāk nekā divas kvadrātveida saknes, rīkojieties tādā pašā veidā - ar tādu pašu radikālu zīmi savāc visu radīto sakņu radikālās izpausmes kā viena sarežģītas izteiksmes faktorus un pēc tam vienkāršojiet to. Piemēram, reizinot kvadrātveida saknes no skaitļiem 3.14, 7.62 un 5.56, darbību var rakstīt šādi: √ 3, 14 * √ 7.62 * √5.56 = √ (3.14 * 7.62 * 5, 56) = 3133, 033008. Un kvadrātu sakņu, kas iegūtas no izteiksmēm ar mainīgajiem x + 7, x-14 un 2 * x + 1, reizinājums ir šāds: √ (x + 7) * √ (x-14) * √ (2 * x + 1) = √ ((x + 7) * (x-14) * (2 * x + 1)) = √ ((x²-14 * x + 7 * x-7 * 14) * (2 * x + 1)) = √ ((x²-7 * x-98) * (2 * x + 1)) = √ (2 * x * x²-2 * x * 7 * x-2 * x * 98 + x²-7 * x-98) = √ (2 * x³-14 * x2-196 * x + x²-7 * x-98) = √ (2 * x³-13 * x²-205 * x-98).

  • kvadrātsaknes noteikumi